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Abstract. Based on kinetic arguments we obtain the time-dependent probability of occurrence
of interactions of different ranges for biopolymer foldingin vitro under realistic time constraints.
We focus on random primary sequences in order to fit our results within the context of disordered
condensed matter. For the sake of illustration, the results are specialized for RNA folding. They
account for the cooperative effects on the different ranges of interaction and quantify the time
evolution of their contribution to folding. We also discuss the implications of these results
in the understanding of the RNA folding mechanism. Our results furnish evidence supporting
the existence of a universal kinetic intermediate in such a process, in accord with previously
obtained experimental results.

1. Introduction

The impressive size of conformation space in biopolymer folding rules out the possibility
for the biopolymer molecule to find its active conformation by means of an exhaustive
random search within biologically relevant renaturation timescales [1, 2]. For RNA folding
in vitro, the latter are incommensurably shorter than ergodic timescales, as it has been
recently pointed out [2]. This fact makes it obvious that biopolymer folding must be carried
out through some sort of action-directed pathway. The process must be subject to kinetic
control and robust events describable within a coarse description of conformation space
must determine the pathways decisively [3, 4].

Since biopolymer folding is a kinetically controlled process, the characterization of the
free energy landscape becomes a crucial starting point for any theory which attempts to
explain it [3, 5]. In this context, an algorithm to elucidate kinetic folding pathways in RNA
based on sequential minimization of the entropy loss has been introduced, showing also
its ability as a predictive tool [6]. The applicability of this approach hinges upon the fact
that the kinetic barriers for loop closure are best estimated as−T 1Sloop, where1Sloop is
the entropic change associated to the reduction in conformational freedom entailed by the
formation of the loop. Thus, previous results point to an opportunistic search in the free
energy landscape as an expedient to finding the active conformation. By opportunistic we
mean that the search follows a ‘principle of least effort’, that is, the lowest barriers locally
dictate the favoured folding step at each stage.

Within this context, the aim of this work is to assess the priority of different ranges of
interaction establishing a chronology along dominant folding pathways. Furthermore, we
furnish a quantitative measure of the role of cooperativity in the advanced stages of folding,
following the initial collapse of the polymer into a universal kinetic intermediate. This
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intermediate is characterized by single-loop independent interactions of favourable ranges,
readily formed starting from a random coil within the milliseconds time frame.

The outline of the paper is as follows. In section 2 we derive the entropic contribution
for loop closure in order to determine the activation energy landscape for the folding process.
In section 3 we obtain the time dependence of the probability of occurrence of anN -range
interaction and quantify the role of cooperative effects in folding. Section 4 displays the
results for random chains. In the light of the results shown in section 4, section 5 deals with
a proposed picture of the kinetic folding mechanism supporting the existence of a universal
kinetic intermediate. Mounting experimental evidence agrees with this picture, as revealed
in sections 5 and 6. Section 6 is devoted to justifying the existence of the universal kinetic
intermediate by probes which are independent of the previous analysis.

In order to address specific experimental contexts [7], two essential features will be
incorporated in future extensions of the theory:

(a) The possibility of forming tertiary motifs such as the pseudoknot (residues in a
hairpin engaged in base-pairing with residues outside the hairpin forming an additional
stem and loop region [8]).

(b) The role of Mg(II) ions in lowering the kinetic barriers for the occurrence of specific
base-pair interactions.

These features are briefly discussed in section 2.

2. Activation barriers in the kinetic control of RNA folding

In general, the observed marginal stability of the folded form of biopolymers [6, 9–13] im-
plies the existence of a force opposing stabilizing chain interactions hitherto ignored: the
conformational entropy [14, 15]. The computation of this quantity is tantamount to determin-
ing a key feature complementary to the canonical thermodynamic quantities: the activation
energy landscape. Specifically, since the process of RNA folding is subject to kinetic control
and recent results [6] suggest that folding pathways are governed by a least action principle,
we are faced with the necessity of acquiring a precise knowledge of the activation barriers
involved in folding events, which implies a quantitative determination of the entropy loss.

The rate-limiting step in RNA loop formation is the process of bringing into close contact
the antiparallel regions capable of forming base pairing [16, 17]. As this event implies a
loss in conformational entropy, the elucidation of the profile−T 1Sloop (1Sloop = loss in
conformational entropy in the formation of a loop) as a function of loop size becomes a
cornerstone in the determination of the activation barriers for folding. Relevant portions
of this profile have been obtained elsewhere [18], so we only outline here the physical
principles and basic tenets of the previous study.

As is well established, taking into account excluded-volume effects in the closure of a
loop of sizeN in a linear RNA chain, the loss in conformational entropy takes the value
[19]

1Sloop = −µR ln N + K(v) (1)

whereµ must be taken to be 1.75 for RNA (a polyelectrolite) in a good solvent like water
and K(v), which is constant for the different loop sizes, depends on the effective contact
volumev. Since this last term is not amenable to an easy direct evaluation, it is obtained
by comparing equation (1) with reliable measurements for stable loops.

Equation (1) is valid in the limit of large loops but it cannot be extrapolated for small or
moderate-sized loops, since orientational effects for charged moieties (phosphates) are re-
sponsible for the breakdown of the logarithmic dependence onN . This is shown as follows.
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Figure 1. Conformational entropy loop(−T 1Sloop) involved in the closure of a loop of size
N . The loop sizes are expressed in units of three (each unit ofN represents three nucleotides).

Consider a linear RNA chain immersed in water. The RNA molecule has many internal
rotational degrees of freedom. As these rotations are much faster than the folding events we
are concerned with, we can average them out whenever we deal with the folding process.
This averaging process could be said to be inspired by the Born–Oppenheimer approxima-
tion, where comparatively slow nuclear motion is corresponded with folding events and fast
electronic motion with backbone rotational freedom. The faster backbone rotations allow
for the orientation of the charged phosphate moieties within a specific folding of the chain.
This separation in timescales (nanosecond versus millisecond-to-second range) allows us to
regard the RNA chain as a rod of fixed circular cross section in the averaging limit. This cir-
cular cross section corresponds to twice the mean phosphate–base distance [19]. If we now
close a planar loop, we are left with two distinctive domains of the solvent: the inner domain
of cluster-like dimensions and the outer bulk-like domain. This points to the existence of a
critical loop size beyond which these two domains behave as indistinguishable, being equally
capable of solvating the polar phosphate groups of the RNA molecule. But for loop sizes be-
low this critical size, the solvent of the inner domain acquires discrete features and becomes
a poorer dielectric. The crucial point here is that the structure of the solvent isqualitatively
different from the bulk. In this case, the RNA molecule orients its polar groups to the outer
domain. This fact causes an extra (orientational) conformational entropy loss which must be
reflected in the profile of−T 1Sloop. This contribution of1Sloop can be evaluated simply by

1Sorient = R ln

[
�loop

�RC

]
= R ln

[
2M−N

2M

]
= R ln 2−N = −RN ln 2 (2)

where� is the number of conformations or microscopic realizations of a given topology
(�loop for a loop of sizeN within a chain of lengthN and�RC for a random coil of length
M). For loops of length less or equal the critical size, this term needs to be considered and
becomes the dominant term since it is linear inN , in contrast to the logarithmic dependence
on N of the term based on excluded-volume effects. The critical sizeNc was determined,
based on the consideration of molecular dimensions and regarding the RNA molecule as a
rod, as beingNc = 17 [18]. For loops of sizes greater than the critical, there is no orienta-
tional term and the excluded-volume effects become the exclusively dominant effects. The
profile −T 1S versusN is displayed in figure 1.

Although the paramount role of Mg(II) ions for certain RNA folding contexts [7] will
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Figure 2. Spatial representation of a pseudoknot comprising hairpin loop I followed by loop II.
The region to be oriented concurrently with closure of loop II is displayed by thin curve between
the arrows. The thin curve region common to loops I and II is already oriented upon formation
of loop I and prevents both loops from being coplanar.

not be explicitly dealt with in this paper, it should be discussed briefly in the light of the
orientation arguments presented in this section.

It is known that Mg(II) binds to adjacent phosphates of unpaired nucleotides by forming
a coordination complex [20]. Thus,−T 1Sloop for the process of phosphate orientation
concurrent with loop closure is roughly reduced by one half since the 30 kcal mol−1 released
when a single coordination bond is formed can be actually invested in the orientation of the
phosphate adjacent to the one that is already coordinated. This reasoning is corroborated
further by the minimal (0.1 kcal mol−1) difference between the free energy of formation of
a bulge loop of size one and one of size two (the size-one loop does not require magnesium
while in the size-two loop chelating coordination makes both phosphates behave as a single
entity).

Throughout the following sections we shall only be concerned with planar secondary
interactions forming Watson–Crick (C–G, A–U; C= cytosine, G = guanosine, A=
adenine, U= uracil) base pairs. Further research will deal with certain tertiary structure
motifs as well. Thus, the activation barrier for pseudoknot formation can be easily obtained
from the orientational arguments introduced here: suppose a hairpin I has been formed (see
figure 2) and we desire to derive the activation barrier associated with forming loop II, and
suppose that loop I and loop II are below the critical range. We first observe that both loops
cannot be coplanar since the common region (thick full curve in figure 2) has already been
oriented upon formation of loop I and, as such, it is solvated by bulk water, a condition
not easily relinquished. Should loop II form coplanarly, it would affect the self-energy of
hydration of the phosphates in the thick curve common region by drastically reducing the
dielectric in which these phosphates are immersed. Thus, the loops should be formed in the
manner suggested by figure 2 and−T 1Sloop should be equal toRT L ln 2; whereL is the
number of nucleotides exclusively in loop II in between the arrows, as indicated in figure 2.

3. Probability of occurrence of interactions of rangeN : time evolution and
cooperativity

In following the kinetics of RNA folding, an object which seems worthwhile to focus on is
the time evolution of the probability of occurrence ofN -range interactions. This function
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will provide information on the preeminence of different folding events at different times
and will enable us to make detailed inferences on folding pathways.

In order to study the time evolution ofN -range interactions in RNA, we model the
RNA molecule as a chain of constitutive units or nucleotides, but we are not interested in
an atomic resolution, rather in a structure resolved up to the level of the contact topology or
base-pairing pattern (BPP). The contacts are generated via the base-pairing of antiparallel
regions along the chain following Watson–Crick complementarity. The level of coarsening
of the structure description is the one compatible with our data on entropic and enthalpic
contributions and fits with fundamental thermodynamic forces and timescales which account
for the robustness and expediency of the folding process.

We choose an infinite RNA chain with random primary sequence in order todeal with
entropic effects only. The level of detail suffices to manifest the general phenomenawe are
interested in, as will be presently discussed.

Since the primary sequence of the chain is random, it would be highly unlikely to find
strands with more than three complementary antiparallel nucleotides, so we only consider
contacts formed by three base-pairs. Three is the minimal number of base pairs that stabilize
a contact entailing the formation of a loop, as well as the size of the smallest stable loop
which can be formed. Therefore, we divided the chain into units of three nucleotides. The
ranges of interaction and loop sizes are expressed in such units. For the sake of this analysis,
only loops ofactual size 3N will be considered.

With the −T 1S versusN profile in hand, and having defined the system of interest,
we can study the time evolution of the probability ofN -range interactions. First, we must
consider the time evolution of the probability of occurrence of an interaction of rangeN

in a single independent folding event (involving a simple hairpin loop) starting from an
unfolded chain or random coil. An interaction of rangeN is one which hasN constitutive
elements in between the antiparallel complementary regions which form the contact. In this
case, the formation of an interaction of rangeN corresponds to the closure of a loop of
size N . The probability of occurrence of anN -range interaction is therefore gained with
the creation of a loop of sizeN and is lost with the destruction (unfolding) of such a loop.
So, we have

∂p(N, t)

∂t
= v+(N) − v−(N)p(N, t) (3)

wherev+(N) is the rate of construction of a loop of sizeN starting from the random coil,
v−(N) is the corresponding rate of destruction andp(N, t) is the probability of occurrence
of an interaction of sizeN at time t from an unfolded chain and by means of a single
independent step. The rates of construction and destruction are, respectively [2],

v+(N) = f n exp(1S(N)/R)

v−(N) = f n exp(1H/RT )
(4)

wheref ∼ 106 is the unimolecular constant for base pairing,n = 3 is the number of base
pairs needed to stabilize a contact,1S(N) is the loss in conformational entropy associated
with the formation of a loop of sizeN and1H is the amount of heat released when forming
a contact concurrently with closure of anN -loop. This last quantity is independent of loop
size, sov−(N) is a constant.

From equation (3), the probability of occurrence of an interaction of rangeN at time t

in a single independent event starting from a random coil is

p(N, t) = v+(N)

v−(N)
(1 − exp(−v−(N)t)). (5)
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Figure 3. In the dotted curves: profilep(N, t)–N .
In full curves: corresponding profileP(N, t)–N . In
both cases the sizes of interaction are given in units of
three. (a) t = 5 × 10−5 s; (b) t = 5 × 10−4 s; (c)
t = 5 × 10−3 s; (d) t = 2 × 10−2 s ; (e) ergodic or
thermodynamic times.

Note that att = 0p(N, t) = 0 because we are starting from the random coil where
there are no interactions established, and that in the thermodynamic limitp(N, t) tends to
the Boltzmann distribution law

lim
t→∞ p(N, t) = v+(N)

v−(N)
= f n exp(−T 1S/RT )

f n exp(1H/RT )
= exp(−1G(N)/RT ). (6)

In figure 3 we can see, in the dotted curves, the curvesp(N, t) versusN at different
times. From them we can learn that short-range and moderately long-range interactions
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are the most favourable ones, while long-range interactions and medium-range interactions,
those involving the closure of loops of size near and below the critical size, are significantly
less probable. In figure 3, we can also see that the shape of the curve does not vary with time.
This means that the interactions of different sizes would have the same relative probabilities
at any time if the folding process was governed by the profile ofp(N, t), that is, if all
folding events involved the closure of simple loops, without cooperativity between different
folding steps. But in the dynamics of the folding process, some interactionsdo influence
other subsequent interactions. For example, a long-range interaction of sizeN would have
a negligible probability of being formed within the biologically relevant timescales if it
involved the closure of a big loop of sizeN . But, if there were a previous (or more
than one) interaction of rangeN ′ already contained in it, the loop to be closed to produce
the interaction of rangeN would be smaller and could greatly increase the probability
of occurrence of such interaction. In other cases, for example, a moderately long-range
interaction (with an appreciablep(N, t)) could see its probability of occurrence greatly
diminished if it contained a previously formed short-ranged interaction which shortened
the loop to be closed and made it fall within the region of the critical size. These simple
examples show us that cooperative effects cannot be neglected as they can be important in
the determination of the folding pathways followed by the biopolymer in the nonergodic
regime.

To take into account the cooperative effects we introduce the following:
P(n, t) = Probability of occurrence of an interaction of rangeN in the time interval

(t, t + dt).
Once we have considered the most probable folding events, this probability can be

written in the following way:

∂P (N, t)

∂t
= v+(N) − Ap(N, t) +

(
1

N − 3

) N−3∑
N ′=1

(N − N ′ − 1)

×p(N ′, t)(v+(N − N ′ − 2) − Ap(N − N ′ − 2, t))

+
(

1

(N − 6)(N − 5)

) N−6∑
N ′=1

N−5∑
N ′′=1

(N − N ′ − N ′′ − 2)(N − N ′ − N ′′ − 3)

×p(N ′, t)p(N ′′, t)(v+(N − N ′ − N ′′ − 4) − Ap(N − N ′ − N ′′ − 4, t))

+
{

1

NT − Nc

∑
M>Nc

(M − N − 1)p(M, t)

×(v+(N; M − N − 2) − Ap(N; M − N − 2, t))

+ 1

Nc − N − 2

∑
(N+3)6M6Nc

(M − N − 1)p(M, t)

×(f n − Ap(N; M − N − 2, t))

}
+

(
1

(NT − N − 6)(NT − 2N − 11)

) ∑
M>N+7

M−N−5∑
N ′=1

(M − N − N ′ − 2)

×(M − N − N ′ − 3)p(M, t)p(M; M − N ′ − 2, t)

×(v+(N; M − N ′ − N − 4) − Ap(N; M − N ′ − N − 4, t)) + · · · (7)

where the dummy indicesM, N, N ′ and N ′′ represent loop sizes,NT is the size of the
chain, A denotes the rate of destruction of the loops of the corresponding size (v−(n),
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which is the same for allN ) and wherev+(N1; N2) must be read as the rate of construction
of the loopsN1 and N2 simultaneously formed by closing an internal contact within a
loop of sizeN1 + N2 + 2 already formed. The entropy change associated with such an
event is1S = 1S(N1) + 1S(N2) andp(N1; N2) is the probability of occurrence of such
event.

Integration of equation (7) yieldsP(N, t) which can be separated in five contributions
whose relative importance is hereby assessed:

P(N, t) = P0(N, t) + P1(N, t) + P2(N, t) + P3(N, t) + P4(N, t). (8)

P0(N, t) is identical top(N, t) as it is the contribution to the total probability of the folding
events which involve the closure of single loops without cooperative effects.P1(N, t) is
the contribution of events which involve the formation of an interaction of rangeN already
containing a loop of sizeN ′ (so the loop to close is of sizeN − N ′ − 2). P2(N, t) deals
with interactions with two loops (of sizeN ′ andN ′′) already contained.P3(N, t) is yielded
by the formation of interactions of rangeN inside a greater loop of sizeM already closed.
P4(N, t) is similar toP3(N, t) but with another loop of sizeN ′ already formed inside the
more external one.

Other kinds of cooperative folding events yield a negligible contribution, as our
calculations reveal.P4(N, t) itself is negligible andP3(N, t) is only significant in the
case of an external loop of critical size or smaller. In this case, the creation rate of the
small interior loop would be big, since all polar groups would already be oriented pointing
to the outer domain. In any case, for small loopsP0(N, t) = p(N, t) is very big and
P3(N, t) does not contribute to any appreciable extent to the total probability.

4. Results: the onset of cooperativity

Since folding events can be drastically affected by cooperative effects, the elucidation of
kinetic folding pathways cannot be performed without a precise account of cooperativity.
This means that we require a quantitative measure of cooperativity: we must not only
evaluate its contribution to interactions of any range but also the time evolution of this
contribution. This is the aim of the present section.

From equation (8), cooperativity (visualized in terms ofP(N, t)–p(N, t)) can be
quantified for any size of interaction. As revealed by figure 3, these cooperative effects
are important for certain interactions near the critical loop size and they also produce an
increase in the probability of occurrence of long-range interactions. These effects can bring
the mean time of occurrence of some of these interactions within the otherwise too short
biologically relevant (nonergodic) timescales.

The fact that cooperativity varies with time can be learnt from simple inspection of
figure 3 where we display, with full curves, the profiles ofP(N, t)–N at different times.
There, we can see that cooperative effects are negligible at short timescales as the profile
of P(N, t)–N (full curve) is practically the same as the one forp(N, t)–N (dotted curve)
at the same time. However, at approximatelyt = 5 × 10−3 s the profile begins to change
in a significant fashion, making apparent the onset of the cooperative effects. Then, the
profile quickly acquires the shape that is maintained ast tends to infinity, that is, as the
thermodynamic or ergodic regime is reached.

The first cooperative effects to appear in folding are what we can call cooperative effects
of first order. They involve the existence of a first set of independent events and a second
set of events dependent on the previous ones and, at the same time, independent of each
other. The probability of occurrence of an overall event is the product of the probabilities
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of occurrence of the two steps involved. For example, the two-step event which involves
the closure of a loop already containing a previously formed loop is a cooperative event of
first order. The probabilityP 1(t) of occurrence of a specific kind of cooperative event of
first order is given by

P 1(t) = (c/A2)(1 − exp[−At ])2 (9)

whereA is the rate of destruction of a loop (a constant for any loop size) andc contains the
product of the rates of formation of the two steps involved. An example of a generic curve
of P 1(t) can be seen in figure 4. We can see that these curves (irrespective of the cooperative
event of first order considered) present an inflection point inτ = ln 2/A − 5.81 ms. At
this point in time all theP 1(t) reach one fourth of their thermodynamic values and all
the p(N, t) reach one half of their corresponding thermodynamic values. This inflection
point in the cooperativity contribution marks the site of departure of theP(N, t)–N profile
from the p(N, t)–N profile, making apparent the onset of cooperativity, as we have seen
before.

Figure 4. An example of the time evolution of the probability of occurrence of a cooperative
event of the first kind(P 1(t)).

Cooperative events of higher order, involving more than two steps, present a lower
probability of occurrence and appear later.

5. Inferences on dynamical folding pathways: the universal intermediate state

This section is devoted to the characterization of a universal folding intermediate whose
existence can be inferred from inspection of the results expounded in the previous section.
To postulate the existence of an intermediate is tantamount to assuming that there are two
distinctive groups of events in the folding process. This ispreciselywhat we have observed
in section 4: initially, folding encompasses simple independent folding events which are
subsequently followed by cooperative events.

Regardless of the compelling results of section 4 in what pertains to the existence of
the universal kinetic intermediate, a rigorous justification for its existence will be developed
in section 6. Section 6 is exclusively devoted to studying the averaged time-dependent
behaviour of the Shannon information content of the conformation which is associated to
the folding process. Thus, the time-dependent plot of Shannon’s entropy presents a plateau
in the range 10 ms–1 s. This feature occurs in both the folding of random heteropolymers
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as well as in the folding of all 87 catalytically competent RNAs of the so-called group I
intron family [18], thus furnishing overwhelming evidence in support of the existence of
a kinetic intermediate. Beyond this level of folding, the Shannon entropymonotonically
approaches its absolute minimum (zero).

The existence of the intermediate is a consequence of the exponential dependence of the
unimolecular folding step timescales on the barrier size: a whole spectrum of interaction
ranges, involving all events whose mean time of formation falls within the timespan of the
folding process (of the order of seconds) can only be realized by means of cooperativity.
Certain interactions cannot be formed independently since in the absence of cooperativity
their associated timescales would be far longer than the total time allotted to the folding
process. The onset of cooperativity as the only plausible expedient to realizing such
interactions marks the endpoint in the lifetime of the kinetic intermediate.

This characterization of the first stages of the folding process involving secondary
structure formation seems to be in accord with the experimental context.

Little is known on an experimental basis about the kinetics of folding of large RNAs.
A key feature of group I introns that enables us to test the theory as resolved at secondary
structure level is the fact that there is experimental [21–23] evidence that secondary structure
formation precedes the formation of tertiary interactions.

A recent experimental study of the kinetics of folding of the Tetrahymena ribozyme RNA
[7] supports the existence of a first kinetic intermediate characterized by secondary structure
interactions readily formed even in the absence of Mg(II) ions. These fast interactions were
found not to be essentially affected by the presence of Mg(II) ions. Further steps of the
folding mechanism proposed involve high-order cooperativity and the latter ones imply
tertiary structure formation. Some of these folding steps were found to require the presence
of Mg(II) ions.

The first fast-occurring interactions may be due to the simple non-cooperative
interactions which occur beforeτ = ln 2/A ∼ 5.81 ms characterizing the first intermediate
state, as shown in section 4. These interactions are either moderately long-range interactions
or short-range ones. The moderately long-range interactions would not be affected by
magnesium since they involve the closure of moderately big loops with no orientational
entropy change involved. In turn, short-range interactions, which may be accelerated by
the presence of Mg(II) ions by reducing the orientational entropy cost they involve, are
themselves so fast that the effect of magnesium is not important. However, the steps that
follow thereafter for the folding of the Tetrahymena ribozyme require high cooperativity.
Recent theoretical work [24] expounded in section 6, rooted in the main ideas we have
described here and taking into account the role of magnesium in lowering the kinetic barriers
has shown that secondary structure formation is completed within approximately 100 s, in
good agreement with the time experimentally observed [7]. Since the study we present here
does not account for the effect of magnesium and is not concerned with tertiary structure
motifs, we can only account for the first stages of the folding process. Further work in the
way anticipated in section 2 will be required to fully place our study within the experimental
context.

Similar findings regarding the possible universality of a kinetic intermediate have been
suggested in the protein folding context by an increasing amount of experimental evidence
(for reviews see Creighton [25] and Ptitsyn [26]). The key features of protein folding
relevant to this issue are:

• The initial population of molecules in a refolding experiment is usually heterogeneous
(the molecules are not all random coils but some differ slightly from a random coil). In
any case, the final state is independent of the initial conditions [25].
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• At the beginning of the folding process, each molecule follows a different folding
pathway, but these pathways converge at certain point [25].

• Folding is a cooperative transition of first order. It is an all-or-none process: at the
equilibrium, we have completely folded molecules or completely unfolded ones, without
any appreciable population of molecules with an intermediate degree of folding [27].

• Folding is governed by only one rate-limiting step. All previous steps are faster.
The molecules converge to a limited number of very similar conformations quickly and
reversibly, attaining a pre-equilibrium in an intermediate state [28–35].

• The intermediate state occurs late in the folding process, that is, it is structurally
very similar to the final state, with the major amount of the secondary structure already
formed [29].

• In refolding experiments, the majority of the secondary structure is restored within
0.01 s and secondary structure formation precedes the formation of tertiary structure [34,
36–39].

These results suggest an emerging general picture in which a universal kinetic
intermediate is formed. However, the protein folding context lies outside the scope of
this work.

The intermediate conformation in RNA folding is independent of the initial conditions
since, in its initial stages, the cooperative effects are negligible and all the molecules tend
to form all the simple loops dictated by the profilep(N, t)–N until they saturate this
possibility. Obviously, the final structure thus resulting is independent of the choice of
initial conditions.

Although each molecule follows a different pathway, all form in an appreciable extent
the same contacts and converge accumulating in an intermediate state practically identical.
This fact is responsible for a drastic reduction in the number of possibilities for further
relaxation and, thus, of the final destination of the folding process. As it has been said
before, the life of the intermediate comes to an end once the onset of cooperativity takes
place. This universal point was found to beτ = ln 2/A ∼ 5.81 ms, as shown in section 4.
The ranges of interactions which characterize the intermediate state are those which involve
the closure of simple loops with a mean time of formation compatible withτ . These
are the interactions within the rangesN = 3 to N = 6 and N = 18 to N = 108
(with N in real units, that is, the number of unpaired nucleotides in the loop). Since
τ represents an inflection point in the cooperative effects of first order, the cooperative
events cannot be completely neglected for shorter timescales. Nevertheless, fort < τ , the
cooperative events are less probable than the least probable simple events which characterize
the intermediate state. This can be seen in figure 5 where we compare the probability of
occurrence of a single loop of sizeN = 108, the least probable simple loop with mean
time of formation compatible with the intermediate lifetime, with one of the cooperative
events with the higher probability (a cooperative event of first order involving the closure
of two tetraloops). This fact rules out the possibility of occurrence of a ‘cascade of events’,
that is, cooperative events of high order involving the closure of very stable loops at each
step.

Once the life of the intermediate has come to an end, the molecules can complete
their folding, forming the less favourable interactions, via the cooperativity expedient and
establishing tertiary interactions. The fact that the intermediate state is similar to the
final state can be explained since the majority of the native contacts which involve the
closure of simple independent loops minimizing the contribution−T 1Sloop are formed
before the profile ofP(N, t) versusN begins to change, that is, before the appearance of
cooperativity.
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Figure 5. Comparison of the time dependence of the probability of occurrence of the independent
simple event of closing a loop of size 108 (dotted curve) with the first-order cooperative event
involving the closure of two tetraloops (solid curve). Loop sizes are given in real units.

6. The universal intermediate state as revealed by the time-dependent information
content

A rigorous justification for the existence of a universal kinetic intermediate demands that we
prove a prevailing and temporary stagnation in the growth of information content concurrent
with the folding process. Thus, a time-dependent plot of Shannon’s entropy should display
a plateau within the 10 ms–1 s range in accord with the findings of sections 4 and 5.

To be precise, we shall start by specifying the degree of coarse graining of conformation
spaceX. In our coarse description two RNA conformations are regarded as equivalent if
they share the same BPP. This equivalence relation determines a partitionZ of X in mutually
disjoint equivalence classes.

Given the partitionZ and a stochastic processξ defining transition probabilities between
elements ofZ at each given time, we may define a coarse dynamical system entropyσ(t)

associated to the partitionZ in the following way:

σ(t) = −
∑
A∈Z

πtη(A) ln[πtη(A)] (10)

whereA is a generic BPP,η is the probability measure in the space2 of folding pathways
ϑ ′s(ϑ ∈ 2) determined by our stochastic process [40, 41], andπtη is the projection of
measureη at the instantt . This projection actually yields the weight distribution among
BPPs at timet and can be easily computed using our folding algorithm [3, 16, 42, 43]

πtη(A) = η{ϑ ∈ 2; πtϑ = ϑ(t) ∈ A} = �(A, t)/� (11)

where�(A, t) is the number of generated folding pathways passing throughA at time t

and� is the total number of generated folding pathways.
Direct inspection of equation (10) shows that our coarse entropyσ(t) is minus a Shannon

information content, sinceπtη(A) may be interpreted as the probability of finding a single
molecule folded in BPPA at time t .

In order to determine the behaviour ofσ(t) during the folding of specific RNA
molecules, we first specify the processξ . To implement the process at the computational
level, we first make use of current combinatorial algorithms (see, for example, [44])
to predict all plausible BPPs. Such algorithms incorporate the pseudoknot as a tertiary
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interaction motif and consider only base pairing and stacking as stabilizing interactions in
intramolecular structure.

The stochastic process is determined by the activation energy barriers required to produce
or dismantle stabilizing interactions. Thus, at each instant, the partially folded chain
undergoes a series of disjoint elementary events with transition probabilities dictated by the
unimolecular rates of the events. The stochastic process is Markovian since the choice of
the set of disjoint events at each stage of folding is independent of the history that led to that
particular stage of the process [3, 16, 42, 43]. The process is mechanistically constructed as
follows. For each timet ∈ I , we define a mapt → J (x, t) = {j : 1 6 j 6 n(x, t)}, where
J (x, t) is the collection ofelementaryevents representing conformational changes which
are feasible at timet given that the initial conformationx has been chosen at timet = 0, and
n(x, t) is the number of possible elementary events at timet . Associated to each event there
is a unimolecular rate constantkj (x, t), the rate constant for thej th event [16, 42] which
may take place at timet for a process that starts with conformationx. The mean time for
an elementary refolding event is the reciprocal of its unimolecular rate constant. Thus, for
a fixed time intervalI , the only elementary events allowed are elementary refolding events
that satisfykj (x, t)−1 6 |I |. We now introduce a random variabler ∈ [0,

∑n(x,t)

j=1 kj (x, t)],
uniformly distributed over the interval. Letr∗ be a particular realization ofr arising in a
simulation of the process. Then there exists an indexj∗ such that

j∗−1∑
j=0

kj (x, t) < r∗ 6
j∗∑

j=0

kj (x, t), (k0(x, t) = 0 for anyx, t). (12)

This implies that the eventj ∗ = j ∗(x, t) is chosen at timet for the folding process that
starts at conformationx. Thus, the mapt → j ∗(x, t) for fixed initial conditionx constitutes
a realization of the Markov process which determines the folding pathwayξx . In turn, the
probability that thej ∗-event is chosen at timet is(

kj∗(x, t)

/ ∑
j ′∈J (x,t)

kj ′(x, t)

)
.

Explicit values of the unimolecular rate constants require an updated compilation of the
thermodynamic parameters at renaturation conditions [45]. These parameters are used to
generate the set of kinetic barriers associated to the formation and dismantling of stabilizing
interactions, the elementary events in our context of interest. The rate constantskj s are
precisely those displayed in equation (4), except that the number of base-pairing contacts,
n, is not fixed because we are treating both random as well asreal sequences. In the latter
casen > 3.

At this point we can present computations of the coarse entropyσ(t) for specific
RNA sequences in order to verify the existence of the universal kinetic intermediate. The
behaviour was determined by monitoringσ concurrently with the running of Monte Carlo
simulations making use of working equations (10)–(12) and (4). Taking into account the
working equations and the mechanistic generation of folding pathways, the number of MC
steps can be effectively correlated with real time: 106 = 100 s, 105 = 1 s, 104 = 10 ms,
103 = 100 µs, 102 = 1 µs. The folding of all 87 catalytic RNAs (ribozymes) of the so-
called group I intron family [46, 47] was examined using the compilation of thermodynamic
parameters [45] specified by the renaturation conditions of the experiments presented in
[7]. A drastic reduction of the coarse entropy (slightly higher than 50%) takes place
within the 10 ms timescale. This reduction corresponds to the simultaneous occurrence
of disjoint noncooperative folding events leading to stabilizing interactions with low or
moderately low kinetic barriers. Such interactions cover the ranges 46 N 6 14 and
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24 6 N 6 100. The plateau reached after completion of 104 MC steps (10 ms ) corresponds
to a kinetic intermediate which is experimentally identifiable: it contains all noncooperative
phylogenetically conserved interactions excluding the pseudoknot motif [7]. The second
major and decisive reduction of coarse entropy leads to its absolute minimumonly for the
biological sequences. It is achieved in the 100 s timescale (106 MC steps) and corresponds
to the occurrence of cooperative events. Such events result in the formation of interactions
of an unfavourable range when viewed starting from the random coil. These interactions
require closure of pseudoknotted and complex internal loops which, in turn, require the
prior occurrence of nucleating interactions of favourable ranges. The net effect of such
nucleating interactions is the shortening of the length of loops for the initially unfavourable
interactions. Nucleating interactions have already occurred in the 10 ms timescale and
determine a predictable and detectable [7, 47] kinetic folding intermediate.

For the sake of illustration, the results are displayed in figure 6 for two selected
ribozymes of the group I family. Standard notation has been adopted and the primary

Figure 6. Time-dependent behaviour of the coarse entropyσ for two specific ribozymes of
group I. The abscissas correspond to the logarithm of the number of Monte Carlo (MC) steps
performed in the simulations. (a) The full curve corresponds to the species TtL–21 ScaI and
the broken curve corresponds to a random sequence of the same length (404 nucleotides). (b)
Full curve for the species TtLSU and broken curve for its random counterpart (length= 414
nucleotides).
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sequences have been obtained from [46]. In order to assess their folding efficiency, a
comparison with random sequences (rd) of the same length was included in figure 6.

7. Concluding remarks

We have derived a general picture of the chronology of occurrence of interactions of
different ranges in biopolymer folding. The results are specialized for RNA folding subject
to severe time constraints. The distribution of destination structures for such a process
cannot in general be equated with the Boltzmann distribution. Our results rooted in a
rigorous treatment of the kinetics of the folding process reveal an initial accumulation of
the molecules in an intermediate state with the concurrent drastic reduction in the number
of possibilities for future folding events. This picture accounts for the short timescales
involved in the restoration of the majority of the secondary native structure found in protein
and RNA refolding and renaturation experiments [7, 34, 36–39], and explains the robustness
and expediency of the folding process, bypassing Levinthal’s scenario [1].
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[43] Ferńandez A 1993Physica201A 557
[44] Gautheret D, Major F and Cedergren R 1989Methods in Enzymology183 318
[45] Jaeger J A, Turner D H and Zucker M 1989Proc. Natl Acad. Sci., USA86 7706
[46] Michel F and Westhof E 1990J. Mol. Biol. 216 585
[47] Gesteland R F and Atkins J F ed1993The RNA World(New York: Cold Spring Harbor Laboratory Press)


